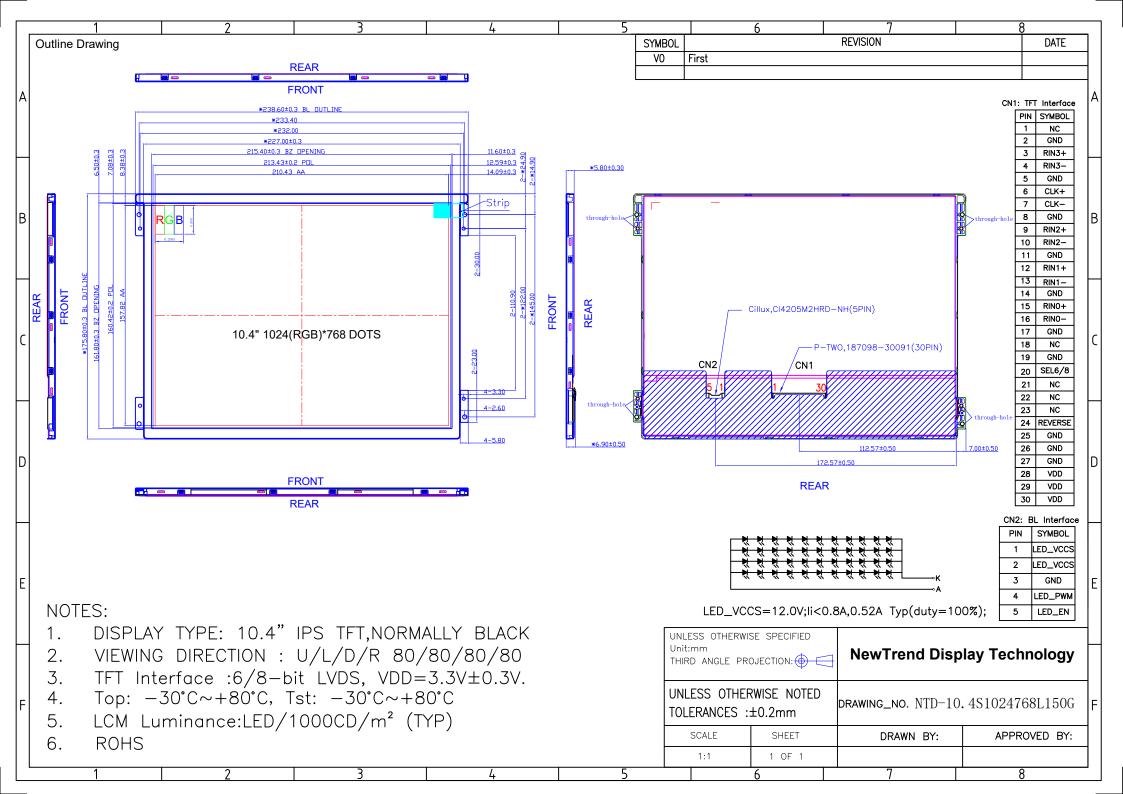


PRODUCT SPECIFICATIONS Module No.: NTD-10.4S1024768L150G

TFT(Thin-Film-Transistor) Color Liquid Crystal Display Module

- 10.4 inch Diagonal
- 1024xRGBx768 resolution
- 6/8 bit LVDS interface
- LED Blacklight (1000cd/m²)
 Built In-LED Driver
 PWM Brightness Control
- 262K/16.7 M colors
- Wide Viewing Angles
- RoHS Compliant


For Customer's Acceptance:

Approved By	Comment

From: NewTrend Display Technology Co., Ltd.							

Document Revision History

Revision	Date	Description	Changed by
0		Initial Release	
			1
+			
+			

Pin Description:

TFT Display:

Pin No.	Symbol	Function Description	Remark
1	NC	Reserved as BIST function for test	Note1
2	GND	Ground	
3	RIN 3+	+LVDS differential data input	
4	RIN 3-	-LVDS differential data input	
5	GND	Ground	
6	CLK+	+LVDS differential data input	
7	CLK-	-LVDS differential data input	
8	GND	Ground	
9	RIN 2+	+LVDS differential data input	
10	RIN 2-	-LVDS differential data input	
11	GND	Ground	
12	RIN 1+	+LVDS differential data input	
13	RIN 1-	-LVDS differential data input	
14	GND	Ground	
15	RIN0 +	+LVDS differential data input	
16	RIN0 -	-LVDS differential data input	
17	GND	Ground	
18	NC	No connection	
19	GND	Ground	
20	SEL6/8	Selection for 6 bits/8bit LVDS data input Low or NC : 8 bit input mode High : 6 bit input mode	Note2
21	NC	Reversed as EE_WP for OTP function	Note3
22	NC	Reversed as EE_SDA for OTP function	Note3
23	NC	Reversed as EE_SCL for OTP function	Note3
24	REVERSE	Reverse panel function (Display rotation)	Note4
25-27	GND	Ground	
28-30	VDD	Supply voltage for LCD (+3.3V)	

Note:

- 1. Pin1 is reversed as BIST function for test, don't connect signal to this pin, keep floating.
- SEL6/8 is used for selecting 6bit/8bit LVDS data input, L or NC: 8bit; High:6bit.
 Pin21,22,23 are used as SPI interface for OTP function, don't connect any signal to these pin, and don't short them, keep floating.
- 4. Reverse pin is used for selecting scanning direction.

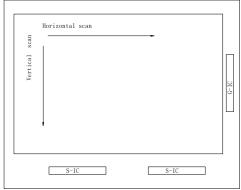


Fig. 1 Normal scan (Pin24, Reverse = Low or NC)

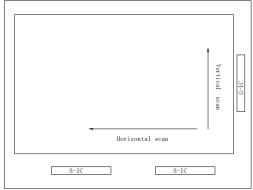
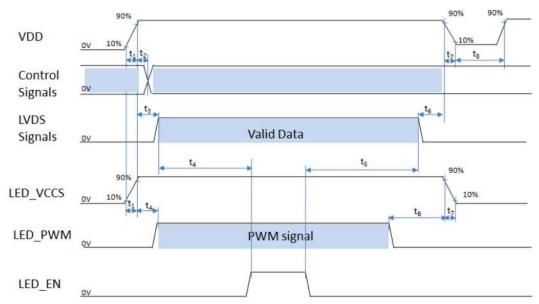


Fig. 2 Reverse scan (Pin24, Reverse = High)


Backlight:

PIN	PIN NAME	DESCRIPTION	Remark
1	LED_VCCS	Supply Voltage for Backlight Driver (+12V TYP)	
2	LED_VCCS	Supply Voltage for Backlight Driver (+12V TYP)	
3	GND	Ground	
4	LED_PWM	Backlight PWM signal input	
5	LED_EN	Backlight enable H: Backlight on, L: Backlight off	

Power Supply For LCM

The power sequence specifications are shown as the following table and diagram.

Cumbal	Va	Unit	
Symbol	Min.	Max.	Unit
t ₁	1	20	ms
t ₂	1	5	ms
t ₃	10	50	ms
t 4	200	500	ms
t ₅	200	500	ms
t ₆	50	200	ms
t ₇	0	20	ms
t ₈	500	-	ms
t _A	0	50	ms
t _B	0	50	ms

Note 1: Please don't plug the interface cable of on when system is turned on.

Note 2: Please avoid floating state of the interface signal during signal invalid period.

Note 3: It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

Note 4: Control signals include SEL6/8 & Reverse.

DC Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-30	-	+80	J
Storage Temperature Range	Тѕт	Absolute Max	-30	-	+80	$^{\circ}$
Digital Supply Voltage	VDD	-	3.0	3.3	3.6	٧
Supply Current	loo	VDD=3.3V @ frame 60 Hz,White pattern	-	385	424	mA
Input logic high voltage	ViH	-	0.7*VDD	-	VDD	V
Input logic low voltage	VIL	-	GND	-	0.3*VDD	V

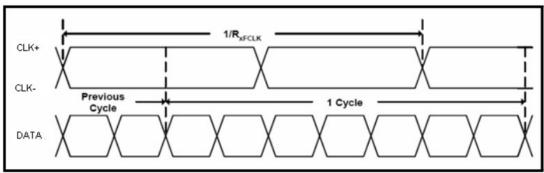
Note: Input signal: sel6/8 & Reverse

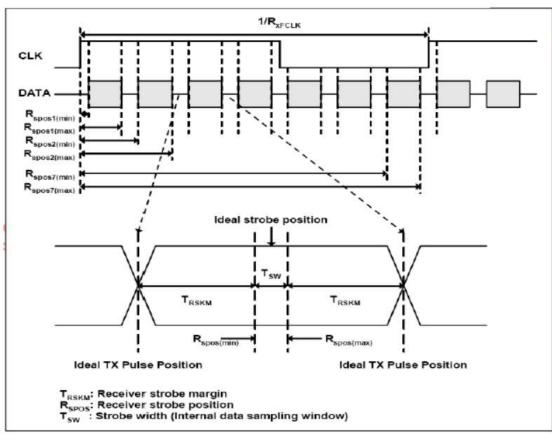
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Backlight Supply Voltage	LED_VCCS	Top=25°C	11.0	12.0	13.0	
Backlight Supply Current	ILED	LED_VCCS =12V DUTY=100%	-	520	800	mA
Backlight Enable Voltage	BL_ON		3.0		5	\ \
LEVEL	BL_OFF		0		0.3]
Backlight PWM Voltage	PWM HIGH LEVEL	-	3.0		5	\ \
LEVEL	PWM LOW LEVEL		0		0.3	V
PWM Frequency Range	LED_PWM		1000		20000	HZ
Backlight Lifetime	-	Top=25°C	50000			Hrs

^{*}Backlight lifetime is rated as Hours until half-brightness, under normal operating conditions. The LED of the backlight is driven by current drain, drive voltage is for reference only. Drive voltage must be selected to ensure backlight current drain is below MAX level stated. LED_PWM DUTY>10%

Optical Characteristics

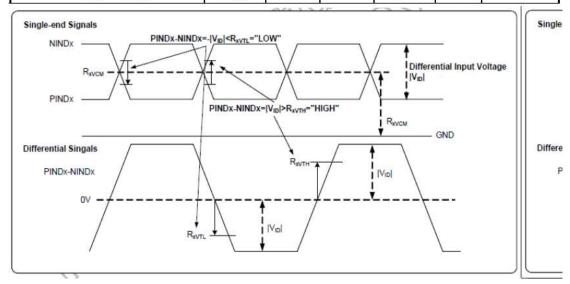
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	
	Тор	-		80	-	-	Don	
Operating	Bottom	-	CR≥10	80	-	-		
Viewing Angles	Left	-	CR210	80	-	-	Deg	
	Right	-		80	-	-		
Contrast Ratio		CR	Center	700	1000	-	-	
Luminance		Lv	PWM DUTY=100%	800	1000		cd/m ²	
Doonanaa Tima	Rise	Tr	Tan=25°C		14	19	ms	
Response Time	Fall	Tf	Top=25°C	_	11	16	ms	
	Red	XR	-		0.651	TYP+0.05	-	
		YR			0.345			
	Green	Xg	-		0.315		Ī	
Chromoticity	Green	Yg		TYP-	0.611			
Chromaticity	Blue	Хв	-	0.05	0.145		•	
	Diue	Yв			0.093			
	White	Xw	-		0.326		-	
	vviile	Yw	-		0.383		-	


Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes


to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

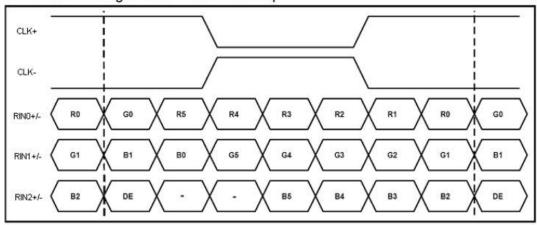
Timing Characteristics

Input clock and data timing diagram

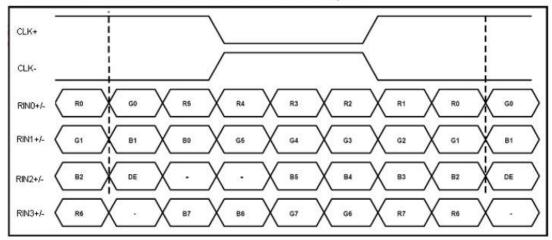

Parameter	Symbol	Min	Тур	Max	Unit s	Condition
Clock frequency	RxFCLK	26.2	51.2	71	MHz	
Input data skew margin	TRSKM	500	500	1/(2*RxFCLK) ps		Typical value for 1024*600 resolution
Clock high time	TLVCH		4/(7xRxFCLK)		ns	VID =400mv RxVCM=1.2V RxFCLK=71MHz VDD_LVDS=3.3V
Clock low time	TLVCL		3/(7xRxFCLK)		ns	
VSD setup time	TenPLL	0	TenPLL	150	us	

LVDS Signal DC Characteristics

B	Ob. al	Values			Hade		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark	
LVDS Differential input high Threshold voltage	R _{xVTH}	-1	-	+100	mV	D -1.2\/	
LVDS Differential input low Threshold voltage	R _{xVTL}	-100	-	-	mV	R _{XVCM} =1.2V	
Input Voltage range (Singled-end)	R _{xVIN}	0	8 % ?	VDD-1.2+ V _{ID} /2	٧		
LVDS Differential input common mode voltage	R _{xVCM}	V _{ID} /2		VDD-1.2	V		
LVDS Differential voltage	[V _{ID}]	0.2		0.6	٧		



Data Timing


Parameter	Symbol	Spec.			Unit
		Min.	Тур.	Max.	Onit
DCLK frequency	fclk	52	65	71	MHz
Horizontal display area	thd		1024		DCLK
HSD period	th	1114	1344	1400	DCLK
HSD blanking	thb+thfp	90	320	376	DCLK
Vertical display area	tvd		768		T _H
VSD period	tv	778	806	845	T _H
VSD blanking	tvbp+tvfp	10	38 🛆	(5/77)	T _H

LVDS Date Input Format

SEL6/8 = "High" for 6 bits LVDS Input

SEL6/8 = "Low" or "NC" for 8 bits LVDS Input

Reliability Test Items and Criteria

No	Test Item	Test condition	Criterion	
1	High Temperature Storage	80℃±2℃ 96H Restore 4H at 25℃,Power off		
2	Low Temperature Storage	-30℃±2℃ 96H Restore 4H at 25℃, Power off	1. After testing, cosmetic and electrical defects should not happen. 2. Total current consumption should not be more than	
3	High Temperature Operation	80℃±2℃ 96H Restore 4H at 25℃,Power on		
4	Low Temperature Operation	-30℃±2℃ 96H Restore 4H at 25℃,Power on		
5	High Temperature/Humidity Storage	60℃±2℃ 90%RH 96H Power off	twice of initial value.	
6	Temperature Cycle	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Precautions for Use of LCD Modules

- 1. Handling Precautions
- 1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

 Isopropyl alcohol 	 Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

— Water — Ketone — Aromatic solvents

- 1.6 Do not attempt to disassemble the LCD Module.
- 1.7 If the logic circuit power is off, do not apply the input signals.
- 1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - a. Be sure to ground the body when handling the LCD Modules.
 - b. Tools required for assembly, such as soldering irons, must be properly ground.
- c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 2. Storage precautions
- 2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 10° C ~ 40° C

Relatively humidity: ≤60%

- 2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 3. The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.